42 research outputs found

    Identifying Important Juvenile Dusky Shark Habitat in the Northwest Atlantic Ocean Using Acoustic Telemetry and Spatial Modeling

    Get PDF
    Highly mobile species can be challenging for fisheries management and conservation due to large home ranges combined with dependence on discrete habitat areas where they can be easily targeted or vulnerable to anthropogenic disturbances. Management of the Dusky Shark Carcharhinus obscurus in the northwest Atlantic Ocean has been particularly challenging due to the species\u27 inherent vulnerability to overfishing and poorly understood habitat associations. To better understand habitat associations and seasonal distributions, we combined telemetry and remotely sensed environmental data to spatially model juvenile Dusky Shark presence probability in the northwest Atlantic Ocean. To accomplish this, 22 juvenile Dusky Sharks (107-220 cm TL) that were tagged with acoustic transmitters at different locations within the U.S. Middle Atlantic Bight region were tracked through networked arrays of acoustic receivers. Tag detections were summarized as daily presence records, and data describing environmental conditions, including depth, chlorophyll-a concentration, salinity, and sea surface temperature, were extracted at detection locations. These data were used in boosted regression tree models to predict juvenile Dusky Shark presence probability based on environmental parameters during fall 2017 and summer 2018. Telemetry observations and modeled presence probability showed consistent associations with temperatures between 16 degrees C and 26 degrees C and chlorophyll-a concentrations between 2 and 7 mg/m(3), which were associated with seasonal migration timing and monthly spatial distributions. Dusky Shark tag detections and predicted distributions during summer and early fall overlapped areas in the Middle Atlantic Bight that were affected by fisheries and potential offshore energy development. Our methodology provides a framework for assessing climate change effects on distribution

    Eyes In The Sky: Linking Satellite Oceanography And Biotelemetry To Explore Habitat Selection By Basking Sharks

    Get PDF
    Background: Satellite-based oceanographic data products are a valuable source of information on potential resource availability for marine species. Satellite oceanography data may be particularly useful in biotelemetry studies on marine species that feed at low trophic levels, such as zooplanktivorous whales, sharks, and rays. The basking shark, Cetorhinus maximus, is a well-documented zooplanktivore in the western North Atlantic, yet little is known of its movements and spatial ecology in this region. A combination of satellite tag technologies were used to describe basking shark movements with respect to concurrent satellite-observed oceanographic conditions in order to test for selection of these environmental variables. Results: Satellite-linked ‘smart’ position only transmitting tags (SPOTs, N = 10) were used to assess horizontal movements, activity space, and habitat selection, while pop-up satellite archival tags (PSATs, N = 7) were used to describe depth preferences of basking sharks during summer and fall. The duration of SPOT tracks ranged from 5 to 45 days. Basking sharks used relatively small activity spaces in three focal areas off Massachusetts: Vineyard Sound, the Great South Channel, and Cape Cod Bay. These sharks appeared to select areas with shallow bottom depths, high primary production and chlorophyll concentrations, and steep surface gradients, but significant selection for these variables was only detected between mid-August and mid-October when the sharks were primarily located in Cape Cod Bay. Conclusions: Basking sharks in the southern Gulf of Maine during summer and fall focus their activities in discrete areas likely to support high primary and secondary productivity. Habitat selection may also be influenced by mating and social activity at times, but further research is needed to differentiate these behaviors from foraging activity. Satellite-based biotelemetry and oceanography are powerful tools that together can provide valuable new insights into habitat selection patterns of highly mobile marine species

    Overview of the U.S. East Coast Bottom Longline Shark Fishery, 1994–2003

    Get PDF
    The U.S. Atlantic coast and Gulf of Mexico commercial shark fisheries have greatly expanded over the last 30 years, yet fishery managers still lack much of the key information required to accurately assess many shark stocks. Fishery observer programs are one tool that can be utilized to acquire this information. The Commercial Shark Fishery Observer Program monitors the U.S. Atlantic coast and Gulf of Mexico commercial bottom longline (BLL) large coastal shark fishery. Data gathered by observers were summarized for the 10-year period, 1994 to 2003. A total of 1,165 BLL sets were observed aboard 96 vessels, with observers spending a total of 1,509 days at sea. Observers recorded data regarding the fishing gear and methods used, species composition, disposition of the catch, mortality rates, catch per unit of effort (sharks per 10,000 hook hours), and bycatch of this fishery. Fishing practices, species composition, and bycatch varied between regions, while catch rates, mortality rates, and catch disposition varied greatly between species

    Critical assessment and ramifications of a purported marine trophic cascade

    Get PDF
    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decision

    A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf

    Get PDF
    Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability) and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region). These results will inform research and management activities related to understanding and adapting marine fisheries management and conservation to climate change and decadal variability

    Future research directions on the "elusive" white shark

    Get PDF
    White sharks, Carcharodon carcharias, are often described as elusive, with little information available due to the logistical difficulties of studying large marine predators that make long-distance migrations across ocean basins. Increased understanding of aggregation patterns, combined with recent advances in technology have, however, facilitated a new breadth of studies revealing fresh insights into the biology and ecology of white sharks. Although we may no longer be able to refer to the white shark as a little-known, elusive species, there remain numerous key questions that warrant investigation and research focus. Although white sharks have separate populations, they seemingly share similar biological and ecological traits across their global distribution. Yet, white shark’s behavior and migratory patterns can widely differ, which makes formalizing similarities across its distribution challenging. Prioritization of research questions is important to maximize limited resources because white sharks are naturally low in abundance and play important regulatory roles in the ecosystem. Here, we consulted 43 white shark experts to identify these issues. The questions listed and developed here provide a global road map for future research on white sharks to advance progress toward key goals that are informed by the needs of the research community and resource managers

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
    corecore